3-3 Videos Guide

3-3a

- The Integral Test:

Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent $\Leftrightarrow \int_{1}^{\infty} f(x) d x$ is convergent.

- Convergence of a p-series
- $\quad \sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$

3-3b
Exercise:

- Determine whether the series is convergent or divergent.
$1-5+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\cdots$

3-3c

Estimating sums:

- The remainder of a partial sum and estimating sums: Suppose $f(k)=a_{k}$, where f is a continuous, positive, decreasing function for $x \geq n$ and $\sum a_{n}$ is convergent with sum s. Then if S_{n} is a partial sum,
- $R_{n}=s-s_{n}=a_{n+1}+a_{n+2}+\cdots$ is the remainder in approximating s
- $\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$
- $s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x$

Exercise:
a) Find the partial sum s_{10} of the series $\sum_{n=1}^{\infty} 1 / n^{4}$. Estimate the error in using s_{10} as an approximation to the sum of the series.
b) Use $s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x$ with $n=10$ to give an improved estimate of the sum.
c) Compare your estimate in part (b) with the exact value $\zeta(4)=\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$. (This is known as the Riemann zeta function and is used in physics and higher-level math.)
d) Find a value of n that will ensure that the error in the approximation $s \approx s_{n}$ is less than 0.001 .

$3-3 e$

Proof:

- The Integral Test

